

More information & registration on www.3af-aerodynamics.com

59th 3AF International Conference on Applied Aerodynamics **Unsteady Flows Recent developments and applications**

Strasbourg, France – March 24-25-26, 2025

www.3af-aerodynamics.com

WMLES of a landing gear using Immersed Boundary Condition - Credit ONERA

MONDAY, MARCH 24

08:00		REGISTRATION	
08:45		<u>CONFERENCE WELCOME</u> Irène WEISS - Regional Advisor, Région - President, 3AF & Yannick HOARAU - i(
	<u>Tribu</u>	ite to Laurent JACQUIN - Denis SIPP (ON	IERA)
09:20	Chall	KEYNOTE CONFERENCE N°1 enges in rotary wing unsteady aerodyna Dr. Arnaud LE PAPE (ONERA)	amics
10:05	INTERSESSIONS		
	<u>SESSION 1A</u> Rotorcraft <u>Chairperson</u> : Damien DESVIGNE (Airbus Helicopters)	<u>SESSION 1B</u> Measurement Techniques <u>Chairperson</u> : Benjamin LECLAIRE <i>(ONERA)</i>	<u>SESSION 1C</u> Morphing wings <u>Chairperson</u> : Yannick HOARAU (Université de Strasbourg)
10:10	03 Assessment of a nonlinear unsteady vortex lattice-vortex particle method for predicting helicopter rotor aerodynamics J. FU (Polytechnique Montreal)	09 A Two-Dimensional Calorimetric Wall Shear-Stress Microsensor for Unsteady Low-Speed Flows J. WEISS (Technische Universität Berlin)	63 Electroactive morphing through spanwise travelling waves applied on an A320 wing C. ROUAIX (IMFT)
10:35	11 Passive flow separation control in a vaned radial diffuser A. BOULAY (Ecole Centrale de Lyon)	31 Enhancing the Effective Temporal Resolution of Schlieren Imaging for Unsteady Compressible Flows K. SABNIS (Queen Mary University of London)	42 Drooped Leading-Edge Aerofoil for Improved Aerodynamic and Aeroacoustic Performance F. MADI (University of the West of England)
11:00	48 Numerical modeling of propeller for a small aerial vehicle M. LIPIAN (Lodz University of Technology)	13 Stall cell characterization over a NACA 0015 airfoil using 3D particle tracking velocimetry S. KHALEGHIZADEH (Delft University of Technology)	64 Aerodynamic performance increase in transonic flow over an A320 morphing wing by numerical simulation at Reynolds number of 4.5 million J. ABOU KHALIL (IMFT)
11:25	07 An exploratory study of the turbulent air flow over an island cliff face and its impact on a hovering rescue helicopter N. WATSON (University of Liverpool)	38 Cluster-based tracking method for the identification and characterisation of vortices C. IBÁÑEZ GARCÍA (<i>Cranfield University</i>)	66 Experimental study of the electroactive morphing effects on an A320 prototype in subsonic regime at Reynolds number of 1 million J. ABOU KHALIL (LAPLACE)
11:50		LUNCH	67 Unsteady turbulent aerodynamic flow predictionsaround morphing wings at Reynolds number of 1 Million with Proper Orthogonal Decomposition and Machine Learning A. MAROUF (Université de Strasbourg)

Stra

urg, France

PRELIMINARY PROGRAMME

MONDAY, MARCH 24

KEYNOTE CONFERENCE N°2

13:30

RANS-based global stability analysis for modeling unsteady flows near onset

Dr. Jeffrey CROUCH (Boeing)

14:15

INTERSESSIONS

14:15	INTERSESSIONS		
	<u>SESSION 2A</u> Propulsion Systems <u>Chairperson</u> : Patrick GONIDEC (Safran)	<u>SESSION 2B</u> Laminar Separation Bubble & Transition <u>Chairperson</u> : Maxime FORTE (ONERA)	<u>SESSION 2C</u> Advanced Flow Field Analysis <u>Chairperson</u> : Jean-Pierre ROSENBLUM (Dassault Aviation)
14:20	01 Performances and Flow Characteristics Comparison between Mixed-flow and its Radial-inflow Counterpart Turbines M. BORDJANE (University Mohamed Boudiaf)	06 Dynamics and losses of a short laminar separation bubble P. DUQUESNE (Ecole Centrale de Lyon)	45 Breakdown of exergy dissipation within regions of shockwave/viscous wake interaction I. PETROPOULOS (ONERA)
14:45	05 Three-Dimensional Numerical Flowfields of Rotating Detonation Engines and Computational Challenges J.C. SILVA (Universidade da Beira Interior)	08 Impact of Free-Stream Turbulence on the Laminar Separation Bubble around a DU89-134 airfoil by coupling Synthetic Eddy and Variational MultiScale Methods C. BRUNELLI (Royal Military Academy)	36 Study of the rotational effect on the separated flow over wind-turbine-blade section based on DES D.S. SOUZA (São Paulo State University)
15:10	21 Unsteady flow interactions and ground plane proximity in a coupled compact intake-fan in crosswind L. LOBUONO (Cranfield University)	62 NACA0012 airfoil under varying freestream velocity at low Reynolds number T. JARDIN (ISAE-SUPAERO)	69 Overview, scope and goals of the Multidisciplinary DPW-8 and AePW-4 Workshops F. SARTOR (ONERA)
15:35		COFFEE BREAK	
16:05	22 Characterizing Unique Bi-Stability Pattern in Mach 5 Inlet Buzz Phenomena T. GURBUZ (University of Manchester)	49 Experimental Investigation of Boundary Layer development and Transition indu-ced by large leading edge roughness in Realistic Ice Accretion Scenarios M. PICCIOLO (ONERA)	32 Implementation and Validation of a Geometric Advection Scheme in a CLSVOF Solver T. MRAZEK (Technical University of Munich)
16:30	30 Propeller-induced unsteady flow inside a model cooling duct of a hydrogen-electric aircraft T. BRYCE-SMITH (Imperial College)		20 Effect of Synthetic Jet Slot Geometry on the Development and Meandering of a Wing-Tip Vortex M. DGHIM (Université de Sherbrooke)
16:55	25 Characterisation of aerospike rocket engine using PSP measurements and CFD simulations B. MASSE (Institut Saint-Louis)		

TUESDAY, MARCH 25

KEYNOTE CONFERENCE N°3

Recirculating Flow Asymmetry and Dynamics in Vehicle Wakes

Prof. Olivier CADOT (Liverpool University)

09:15

	<u>SESSION 3A</u> Automotive <u>Chairperson</u> : Jacques BOREE <i>(ISAE ENSMA)</i>	<u>SESSION 3B</u> Gust and buffet loads <u>Chairperson</u> : Holger BABINSKY (University of Cambridge)
10:00	14 Coupling of bi-stable modes for squareback geometries in close-proximity J. UPTON (Loughborough University)	46 Unsteady drag calculations during wing-gust encounter I. ANDREU ANGULO (Universidad Carlos III de Madrid)
10:25	15 Investigating the Link Between Front and Rear Wheel Wakes of a Simplified Automotive Body C. WALLACE (Loughborough University)	51 Unsteady Aerodynamics of Wing-Vortex Gust Encounters P. VADHER (University of Cambridge)
10:50	18 Aerodynamics of the square-back Ahmed body under unsteady conditions N. MAZELLIER (Université d'Orléans)	23 Transverse Gust Mitigation by Deploying Trailing Edge Flap S. LI (University of Cambridge)
11:15	COFFEI	E BREAK
11:15	54 Structure of the pressure fluctuations in the flow over a forward-facing step B. PODVIN (Université Paris-Saclay)	04 Experimental and Numerical Investigation of Fast Control Surface Deflections R. SEIDLER (DLR)
	54 Structure of the pressure fluctuations in the flow over a forward-facing step	04 Experimental and Numerical Investigation of Fast Control Surface Deflections
11:45	54 Structure of the pressure fluctuations in the flow over a forward-facing step B. PODVIN (Université Paris-Saclay) 58 Assessment of turbulence models using automatic grid refinement for the Windsor body at yaw	04 Experimental and Numerical Investigation of Fast Control Surface Deflections R. SEIDLER (<i>DLR</i>) 44 Influence of Turbulence Model and Mesh Refinement on Aerofoil Shock Buffet Onset

TUESDAY, MARCH 25

14:15	KEYNOTE CONFERENCE N°4 A viewpoint on aircraft noise, aeroacoustics and simplified noise-source modelling Dr. Jérôme HUBER (Airbus)	
	<u>SESSION 4A</u> Aeroacoustics <u>Chairperson</u> : Denis GELY <i>(ONERA)</i>	<u>SESSION 4B</u> High Speed Flows <u>Chairperson</u> : Friedrich LEOPOLD (Institute of Saint-Louis)
15:00	10 Isolation of Upstream Moving Acoustic Waves in Screeching Supersonic Jet S. AHIRE (Indian Institute of Technology Bombay)	12 Aerodynamic optimization of a spin stabilized projectile under stability constraints S. BAGY (Institute of Saint-Louis)
15:25	40 Passive Control of Aeroacoustic Noise Generation in Transonic Cavity Flow via Cylindrical Rod M. YILMAZ (Turkish Aerospace)	19 Measuring the Influence of Ablation on Hypersonic Plasma Trails in ISL's Hyperballistic Tunnel by means of Radar: Simulation and Experiment K. PSARRAS (Fraunhofer Institute for High Frequency Physics and Radar Techniques)
15:50	 High-fidelity simulations of the flow around a shrouded tail rotor in hover conditions M. SANJOSÉ (Ecole de Technologie Supérieure) 	57 Tests and CFD simulations of the impact of water injection on the blast wave generated by rocket engine J. COLLINET (ArianeGroup)
16:15	COFFEE	BREAK
	43	65

16:45	 43 Aeroacoutic study of the LAGOON landing gear using a lattice-Boltzmann flow solver and source identification techniques D. MARTINS (Dassault Systems Deutschland) 	65 Influence of the Angle of Attack on Spiked Cylinder Flow D. KLATT (Institute of Saint-Louis)
17:10	47 Investigating the Joined Wing Aircraft Aerocoustics Using Unsteady Flow Simulations P. HANMAN (University of the West of England)	
17:35	END OF S	SESSIONS
19:00	BANQUET & AW	ARD CEREMONY

WEDNESDAY, MARCH 26

09:15

KEYNOTE CONFERENCE N°5

Fast unsteady aerodynamic and flutter calculations for subsonic and transonic aircraft

Prof. Grigorios DIMITRIADIS (Liège University)

_	SESSION 5A	SESSION 5B
	Fluid-Structure Coupling	Unsteady Flow Modelling
	Chairperson: Vincent BRION	Chairperson: Pascal LARRIEU
	(ONERA)	(Airbus)
	50	59
	Control of Aerodynamic Loads using	Review of Unsteady Simulations on Civil Aircraft
10:00	Unsteady Active Aerodynamic Bleed	
	M DECALVO (Coordia Instituto of Tochnology)	F. SARTOR (ONERA)
	M. DESALVO (Georgia Institute of Technology)	
•	33	34
	Large Eddy Simulations of a NACA 63(3)418 Aerofoil Undergoing	Linearly Implicit Rosenbrock Methods for
0:25	One-shot Starting Cycles at Highly Unsteady Conditions	Unsteady Flow Simulation
10.25		
	Q. MARTINEZ (City, University of London)	J. LÖWE (DLR)
	35	68
	Two-dimensional CFD simulation of	Unsteady simulations of an aircraft in take-off conditions with
0:50	pitching airfoil under non-harmonic motion	installed engine and rotating fan
0.50		
	D.S. SOUZA (São Paulo State University)	F. SARTOR (ONERA)
1:15	COFFEE	BREAK
	28	37
-		
	Experimental Characterization of the Transonic	Towards Scale Resolving Simulations with CHAMPS solver
	Experimental Characterization of the Transonic Buffet Lock-In Phenomenon for an Airfoil	Towards Scale Resolving Simulations with CHAMPS solver
L1:45	-	Towards Scale Resolving Simulations with CHAMPS solver B. ARNOULD (Polytechnique Montréal)
11:45	Buffet Lock-In Phenomenon for an Airfoil in Free Pitching and Plunging Motion	
11:45	Buffet Lock-In Phenomenon for an Airfoil in Free Pitching and Plunging Motion L. SICARD (ONERA)	B. ARNOULD (Polytechnique Montréal)
11:45	Buffet Lock-In Phenomenon for an Airfoil in Free Pitching and Plunging Motion L. SICARD (ONERA) 41	B. ARNOULD (Polytechnique Montréal) 17
11:45	Buffet Lock-In Phenomenon for an Airfoil in Free Pitching and Plunging Motion L. SICARD (ONERA) 41 Stability analysis of a two-degree-of-freedom	B. ARNOULD (<i>Polytechnique Montréal</i>) 17 Investigation of corner flow separation on
	Buffet Lock-In Phenomenon for an Airfoil in Free Pitching and Plunging Motion L. SICARD (ONERA) 41	B. ARNOULD (<i>Polytechnique Montréal</i>) 17 Investigation of corner flow separation on a 3D curved duct using non-linear closures
	Buffet Lock-In Phenomenon for an Airfoil in Free Pitching and Plunging Motion L. SICARD (ONERA) 41 Stability analysis of a two-degree-of-freedom bluff body pendulum	B. ARNOULD (Polytechnique Montréal) 17 Investigation of corner flow separation on
	Buffet Lock-In Phenomenon for an Airfoil in Free Pitching and Plunging Motion L. SICARD (ONERA) 41 Stability analysis of a two-degree-of-freedom	B. ARNOULD (<i>Polytechnique Montréal</i>) 17 Investigation of corner flow separation on a 3D curved duct using non-linear closures
	Buffet Lock-In Phenomenon for an Airfoil in Free Pitching and Plunging Motion L. SICARD (ONERA) 41 Stability analysis of a two-degree-of-freedom bluff body pendulum	B. ARNOULD (<i>Polytechnique Montréal</i>) 17 Investigation of corner flow separation on a 3D curved duct using non-linear closures and hybrid RANS/LES simulation
	Buffet Lock-In Phenomenon for an Airfoil in Free Pitching and Plunging Motion L. SICARD (ONERA) 41 Stability analysis of a two-degree-of-freedom bluff body pendulum A. MYSKIW (Institut Pprime)	B. ARNOULD (<i>Polytechnique Montréal</i>) 17 Investigation of corner flow separation on a 3D curved duct using non-linear closures and hybrid RANS/LES simulation L. PRUDENZANO (<i>ONERA</i>)
	Buffet Lock-In Phenomenon for an Airfoil in Free Pitching and Plunging Motion L. SICARD (ONERA) 41 Stability analysis of a two-degree-of-freedom bluff body pendulum A. MYSKIW (Institut Pprime) 26	B. ARNOULD (Polytechnique Montréal) 17 Investigation of corner flow separation on a 3D curved duct using non-linear closures and hybrid RANS/LES simulation L. PRUDENZANO (ONERA) 02
	Buffet Lock-In Phenomenon for an Airfoil in Free Pitching and Plunging Motion L. SICARD (ONERA) 41 Stability analysis of a two-degree-of-freedom bluff body pendulum A. MYSKIW (Institut Pprime) 26 CFD database for the Common Research Model (CRM) for machine learning activities	B. ARNOULD (Polytechnique Montréal) 17 Investigation of corner flow separation on a 3D curved duct using non-linear closures and hybrid RANS/LES simulation L. PRUDENZANO (ONERA) 02 Using Reduced Order Model with Stochastic Closure to Estimate and Predict Unsteady Flows
	Buffet Lock-In Phenomenon for an Airfoil in Free Pitching and Plunging Motion L. SICARD (ONERA) 41 Stability analysis of a two-degree-of-freedom bluff body pendulum A. MYSKIW (Institut Pprime) 26 CFD database for the Common Research Model	B. ARNOULD (Polytechnique Montréal) 17 Investigation of corner flow separation on a 3D curved duct using non-linear closures and hybrid RANS/LES simulation L. PRUDENZANO (ONERA) 02 Using Reduced Order Model with Stochastic
12:10	Buffet Lock-In Phenomenon for an Airfoil in Free Pitching and Plunging Motion L. SICARD (ONERA) 41 Stability analysis of a two-degree-of-freedom bluff body pendulum A. MYSKIW (Institut Pprime) 26 CFD database for the Common Research Model (CRM) for machine learning activities J. PETER (ONERA)	B. ARNOULD (Polytechnique Montréal) 17 Investigation of corner flow separation on a 3D curved duct using non-linear closures and hybrid RANS/LES simulation L. PRUDENZANO (ONERA) 02 Using Reduced Order Model with Stochastic Closure to Estimate and Predict Unsteady Flows F. REGNAULT (Scalian DS)
11:45 12:10 12:35 13:00	Buffet Lock-In Phenomenon for an Airfoil in Free Pitching and Plunging Motion L. SICARD (ONERA) 41 Stability analysis of a two-degree-of-freedom bluff body pendulum A. MYSKIW (Institut Pprime) 26 CFD database for the Common Research Model (CRM) for machine learning activities J. PETER (ONERA)	B. ARNOULD (Polytechnique Montréal) 17 Investigation of corner flow separation on a 3D curved duct using non-linear closures and hybrid RANS/LES simulation L. PRUDENZANO (ONERA) 02 Using Reduced Order Model with Stochastic Closure to Estimate and Predict Unsteady Flows
12:10	Buffet Lock-In Phenomenon for an Airfoil in Free Pitching and Plunging Motion L. SICARD (ONERA) 41 Stability analysis of a two-degree-of-freedom bluff body pendulum A. MYSKIW (Institut Pprime) 26 CFD database for the Common Research Model (CRM) for machine learning activities J. PETER (ONERA)	B. ARNOULD (Polytechnique Montréal) 17 Investigation of corner flow separation on a 3D curved duct using non-linear closures and hybrid RANS/LES simulation L. PRUDENZANO (ONERA) 02 Using Reduced Order Model with Stochastic Closure to Estimate and Predict Unsteady Flows F. REGNAULT (Scalian DS)