

08:45

PRELIMINARY PROGRAMME

WEDNESDAY, MARCH 27

REGISTRATION

	CONFERENCE WELCOME
	Eric BLOND, President - University of Orléans
09:15	Régine WEBER, Director- Polytech Orléans
	Azeddine KOURTA - PRISME Laboratory
	Eric CHAPUT, President - Scientific Committee AERO2024

	KEYNOTE CONFERENCE N°1
10:00	Data-assimilation and stability analysis of turbulent mean-flows
	Dr. Olivier MARQUET (ONERA)

	SESSION 1A Innovative Experimental techniques Chairperson: Ferry SCHRIJER	<u>SESSION 1B</u> Multiphysics coupling <u>Chairperson</u> : Eric LAURENDEAU
	(TU Delft)	(Polytechnique Montréal)
10:45	40 Towards high resolution and high frequency Real-Time Optical Flow Particle Image Velocimetry. Application to a separated flow J. PIMIENTA (ESPCI Paris)	45 A Two-Dimensional Multi-Layer Stochastic Icing Model Utilizing the Immersed Boundary Method M. BLANCHET (<i>Polytechnique Montréal</i>)
11:10	26 Wing-to-wall distance effect on the large-scale turbulent structures using volumetric particle tracking velocimetry T. TAIBI (INRAE)	54 Data assimilation of transitional flows to predict aerodynamic instabilities of airfoils at low angles of attack R. PERON (ONERA)
11:35	52 Unsteady Aerodynamics of Vortex Gust Generation P. VADHER (University of Cambridge)	<u>18</u> Morphing Aerofoil for Improved Aerodynamic and Aeroacoustic Performance F. MADI (University of the West of England)
12:00	28 In-flight optical fibre measurements for aerodynamics L. MENNEBEUF (AIRBUS Operations SAS)	64 The Viscous Region at the Leading Edge of a Plate of Zero Thickness E. PARENTE (Safran Tech)
12:25	6 Assessment of accuracy of multi-point calibration and single point calibration technique using an accelerometer force balance S. DEKA (IIT Guwahati)	
12:50		NCH

PRELIMINARY PROGRAMME

WEDNESDAY, MARCH 27

14:15	KEYNOTE CONFERENCE N°2 Uncertainty Quantification in Data-Driven Aerodynamics Predictions Prof. Gianluca IACCARINO (Institute of Comp. & Math. Engineering, Stanford University)				
	<u>SESSION 2A</u> Mesh Adaptation <u>Chairperson:</u> Frédéric ALAUZET (INRIA)	<u>SESSION 2B</u> High Speed Flows <u>Chairperson</u> : Jean COLLINET (<i>ArianeGroup</i>)	<u>SESSION 2C</u> Optimisation with ROM <u>Chairperson</u> : Laurent CORDIER (Institut P', ISAE-ENSMA)		
15:00	29 Adaptive Mesh Refinement and Turbulence Modeling for Vortex Interactions M. VISONNEAU (Ecole Centrale de Nantes)	4 Design of a hypersonic gun-launched projectile based on von Karman-derived waverider S. BAGY (ISL - Institut Saint-Louis)	9 Multi fidelity optimisation of transonic wing profile via reduced order model T. SANCHEZ (<i>MBDA</i>)		
15:25	33 Dynamic mesh adaptation for High-Order Finite Volume Simulations of Aeroacoustic Sources in Unsteady Turbulent Flows A. LIAPI (Institut Jean le Rond d'Alembert)	46 Code-to-Code Comparison of CHAMPS and NSMB Solvers Using a Zero-Equation Transition Model for Hypersonic Flows M. BLANCHET (Polytechnique Montréal)	12 Automatic MDO of TBW configuration based on aerodynamic shape optimization with controllability considerations M. MADANI (Amirkabir University of Technology)		
15:50	32 Successive-correction h-p adaptation for k-exact FV schemes in compressible flow simulations M. SALIHOGLU (Institut Jean le Rond d'Alembert)	58 Large Eddy Simulations and Experiments of Shock Oscillations from Separation-Shear Layer Entrainment in Highly Separated Transitional Shock-Boundary Layer Interactions P. L. NEL (<i>Rolls-Royce Deutschland Ltd.</i>)	65 Multi-Objective Industrial Optimization of High-speed Helicopter Main Rotor Blades D. DESVIGNE (Airbus Helicopters)		
16:15		COFFEE BREAK			
	66 High-Fidelity Film-Cooled Rotor High	<u>8</u> Experimental analysis of force locations	56 Multi-Point Surrogate-based Optimization		

16:45	High-Fidelity Film-Cooled Rotor High Pressure Turbine Simulation using Metric- Based Anisotropic Mesh Adaptation F. ALAUZET (INRIA Saclay Île-de-France)	Experimental analysis of force locations in Multi-point Calibration approach for Asymmetric loading over hypersonic configurations A. KAMAL (IIT Guwahati)	Multi-Point Surrogate-based Optimization for Automated Nozzle Design N. RAZAALY (<i>ISAE-ENSMA</i>)
17:10	60	23	63
	A New Rotation Correction for the Spalart-	Measurement of streaks generated	Experimental closed-loop control of an
	Allmaras Model to Improve Off-Body Vortex	by non-uniform surface temperature	airfoil using linear genetic programming
	Prediction and Vortex-Vortex Interaction	distributions for delaying high-speed	at high Reynolds numbers
	Effects	boundary layer transition	P-Y. PASSAGGIA
	F. ALAUZET (INRIA Saclay Île-de-France)	K. OZAWA (Imperial College London)	(University of Orleans)
17:35	61	10	<u>14</u>
	Evaluation of tandem transonic compressor	Transition Prediction for 3D Supersonic	A Novel Methodology for Propellers Rotor
	performances with mixing plane	Swept Wing Based on γ-Reθt model	Blades Optimization
	and metric-based mesh adaptation	C. LIU	H. FELLOUAH
	E. GUILBERT (INRIA)	(AVIC Aerodynamics Research Institute)	(Université de Sherbrooke)
18:00		END OF SESSIONS	

	18:00	
i		
	18:30	

WELCOME RECEPTION | Hosted by Orléans City Hall (Hôtel Groslot)

09:15

PRELIMINARY PROGRAMME

THURSDAY, MARCH 28

	OTE	CON	CEDE		NIº2
NETIN	UIE	CON	LEVE	NCE	11 3

Flow control in Aerodynamics: From model-based to data-driven Dr. Laurent CORDIER (Institut P', ISAE-ENSMA)

	<u>SESSION 3A</u> Flow control <u>Chairperson</u> : Nicolas MAZELLIER (Université d'Orléans)	<u>SESSION 3B</u> Exergy and drag decomposition <u>Chairperson</u> : Patrick GONIDEC (Safran Nacelles)	
10:00	39 Modelling Porosity using Python and CFX for the COMPACT Project A. PREECE (Aircraft Research Association Ltd.)	15 Overview of the IDEFFIX project towards the development of the far-field exergy balance method at an industrial level of complexity I. PETROPOULOS (ONERA)	
10:25	34 Experimental characterisation of controlled separated flows using high-frequencies sweeping jets M. TOCQUER (University of Orleans)	17 Exergy analysis of surface heat exchangers for aircraft engine applications E. PALADINI (Safran Aircraft Engines)	
10:50	38 Separation control of a NACA 4412 with 25° sweep at high Reynolds numbers using pulsed-jet actuators P-Y. PASSAGGIA (University of Orleans)	37 Assessment of the Far-Field Exergy Balance Method for Industrial Aerodynamic and Aerothermal Applications M. MORELLI (Airbus Operations SAS)	
11:15	COFFEE BREAK		
11:45	35 Examination of mass flux equilibrium in the 3D turbulent wake of the flat-back Ahmed body using stacked stereoscopic PIV V. PAREZANOVIC (Khalifa University of Science and Technology)	16 Development of a far-field drag extraction method for supersonic flows I. PETROPOULOS (ONERA)	
12:10	49 On the Control of a Leading-Edge Vortex & its Liftoff on a Cranked, Swept Back Wing W. WIGNANSKI (University of Arizona)	<u>1</u> Drag reduction over the rectangular aircraft wing through varying spanwise waviness characteristics A. INTIZAR - H. TANWEER (<i>Mehran UET Jamshoro</i>)	
12:35	LUN	NCH	

PRELIMINARY PROGRAMME

THURSDAY, MARCH 28

14:00	KEYNOTE CONFERENCE N°4 Applications of Generative Deep Learning for Aerodynamic Modelling Dr. Xavier BERTRAND (Airbus Commercial Aircraft)		
	<u>SESSION 4A</u> Real time data / Design <u>Chairperson</u> : Pascal LARRIEU (<i>Airbus</i>)	<u>SESSION 4B</u> Unsteady flows <u>Chairperson</u> : Marianna BRAZA (<i>IMFT, CNRS</i>)	
14:45	11 Combination of flight test measurement and the aerodynamic model to determine in real time the Horizontal Tailplane angle of attack in dynamic longitudinal maneuvers L. AMBIT MARIN (Airbus Operations SAS)	19 Transient effects from a laminar separation bubble on an airfoil in an oscillating freestream V. FERRAND (ISAE-SUPAERO)	
15:10	42 Aerodynamic Investigation of a Flare-Stabilized Projectile Using Acceleration-Based Measurements and Numerical Simulations F. LEOPOLD (ISL - Institut Saint-Louis)	51 Numerical simulation and physical analysis of the electroactive morphing effects through travelling waves on an A320 wing prototype R. EL AKOURY (Institut de Mécanique des Fluides de Toulouse)	
15:35	59 Model order reduction, application of the DPSM method to real time flight simulation J-P. BARBOT (ENS, Université Paris-Saclay)	27 A novel shock control bump approach for oblique shock wave boundary layer Interactions T. MISSING (University of Cambridge)	
16:00	COFFEE	BREAK	
16:30	57 Towards using Medium-Fidelity Nonlinear Potential Methods for Full Aircraft Configurations C. LE PAILLEUR (Polytechnique Montréal)	48 Dynamic Stall Study of a S809 Airfoil with Retrofitted Vortex Generators M. BODEN (Northumbria University)	
16:55	25 Initial Optimisation and Mach Number Comparison of a Joint Wing Design at High Subsonic Speeds P. HANMAN (University of the West of England)	24 On the Optimal Size of Square-Lobed Trailing Edges in Transonic Flow Over a Backward-Facing Step M. BODEN (Northumbria University)	
17:20	<u>47</u> Airfoil design using machine learning H. FELLOUAH (Université de Sherbrooke)	5 A Novel Approach to 3D Thrust Vectoring CFD via Mesh Morphing U. YILDIZ (Turkish Aerospace Industries)	
18:00	DEPARTURE FROM POLYTECH		

18:30

VISIT - BANQUET & AWARD CEREMONY

PRELIMINARY PROGRAMME

FRIDAY, MARCH 29

09:15	<u>KEYNOTE CONFERENCE N°5</u> Machine-learning-assisted turbulence modeling Prof. Paola CINNELLA (Institut Jean Le Rond D'Alembert, Sorbonne Université)		
	<u>SESSION 5A</u> Machine Learning for simulation and turbulent flows <u>Chairperson</u> : Paola CINNELLA (Sorbonne Université)	<u>SESSION 5B</u> Aerodynamic Design <u>Chairperson</u> : Marc BOUCHEZ (<i>MBDA</i>)	
10:00	30 Reduced Order Modelling with Machine Learning for turbulent aerodynamic flows around wings at high Reynolds number A. MAROUF (University of Strasbourg)	50 Acoustic Analysis and Geometrical Parametric Study of Propeller Trailing-Edge Serrations for Advanced Air Mobility Applications M. DE ROSA JACINTO (Technische Universität Wien)	
10:25	41 Machine learning applied to turbulence modelling for industrial aeronautical applications G. LARUELLE (Dassault Aviation)	53 A comparative study of wind turbine rotor aerodynamic loads obtained from an experimental approach and predicted by a high fidelity CFD simulation M. DUMANOIR (<i>Ecole de l'Air</i>)	
10:50	43 Towards real-time CFD: Novel deep learning architecture for transonic wall-bounded flows F. TEJERO (<i>Cranfield University</i>)	2 Effect of a fan on the unsteady distortion of S-duct intakes M. MIGLIORINI (<i>Cranfield University</i>)	
11:15	COFFEE	BREAK	
11:45	7 Investigations on Physics-Informed Neural Networks for Aerodynamics R. DUVIGNEAU (INRIA Centre)	22 Experimental Investigation of Mixed-Compression Supersonic Intakes using a Highly Re-configurable Model J. LEWIS (Imperial College London)	
12:10		62 A novel wind turbine simplified model capable of generating a swirling wake E. FUENTES-NORIEGA (University of Orleans)	
12:35	LUN	ICH	
14:00	TECHNICAL VISIT		
16:00	END OF AERO2024 CONFERENCE		